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A two-dimensional Boussinesg model describing heat-driven,
buoyant convection in a polygonal enclosure is presented. The
hydradynamic model is based on the time-dependent Navier—Stokes
equations with constant viscosity and thermal conductivity, no
turbulence model or other empirical parameters are introduced. The
polygonal domain is mapped via a numerical Schwarz-Christoffel
transformation onto a rectangle, where the equations of motion are
written in terms of the vorticity and stream function. An alternating
direction implicit (ADI) difference scheme, second-order in space and
first-order in time, is used to integrate the evolution equations, and a
standard elliptic solver is used to solve the Poisson equation for the
stream function. Computational results which are of interest to the fire
research community are presented.

1. INTRODUCTION

The work described in this paper is part of an ongoing
effort among fire researchers to develop models for assessing
the impact of fire upon buildings and property. The study of
fire dynamics requires consideration of materials, combus-
tion, heat transfer, and fluid dynamics [ 1]. However, due to
the wide variation of length and time scales and the large
number of chemical and thermodynamic components in the
problem, comprehensive models of fire behavior do not
exist. Here we restrict our attention to fire-driven gaseous
transport, avoiding serious modeling of the chemical reac-
tions and thermal radiation in the neighborhood of the
combustion zone. For our purposes, the fire serves as a
source of buoyancy which induces large-scale mixing of air
and combustion products, forming a plume which can per-
sist as an organized structure over length scales ranging
from centimeters to tens of meters in buildings and building
complexes [2, 37]. Our objective is to develop the machinery
necessary to model room fire phenomena without the
use of subgrid turbulence models. To do this, we must
approximately resolve internal and mixing boundary layers
for flows whose Reynolds numbers are on the order of 10°,
a typical value for room fires. Unfortunately, to achieve
these levels of resolution we are for the time being restricted
to two-dimensional computations.
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An additional difficulty in modeling enclosure fires is the
presence of building elements such as windows, doorways,
and stairwells which increase the complexity of the com-
putations. In other areas of CFD, such as aerodynamics,
calculations of the steady-state flow over aircraft have
routinely required the use of sophisticated grid-generating
techniques. In fire research, however, the study of fluid flow
in more complicated domains is a more recent activity.
Unfortunately, many of the techniques developed by the
CFD community for solving flow equations on non-
rectangular grids are not applicable to problems in fire
research because they are designed to find steady-state, not
transient, solutions, and they emphasize grids of more
generality than required in the fire context.

In this paper we describe an algorithm which solves the
time-dependent Navier-Stokes equations in the Boussinesq
approximation for two-dimensional, polygonally shaped
regions. We also demonstrate its usefulness in simulating
phenomena such as gravity currents and backdrafts which
are of interest to the fire research community.

II. HYDRODYNAMIC MODEL

We consider a thermally expandable ideal gas of constant
viscosity and thermal conductivity which is driven by a
prescribed heat source. The equations governing the motion
of this fluid, based on the analysis of Rehm and Baum [3],
are

L 4V.pu=0 (1)

p(‘?.E+u-Vu>+VP—Pg=II<§V(V'“)"VX‘”> (2)

ot
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where p is the density, u is the velocity, o is the vorticity, g
is the acceleration of gravity, u is the dynamic viscosity, x is
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the thermal conductivity, g is the spatially and temporally
prescribed heat source, c, is the constant-pressure specific
heat, # is the effective gas constant, and T is the tem-
perature. The specific heat is related to the gas constant by
the equation

R="—"2c,, (5)

where y is the ratio of specific heats ¢,/c,. The pressure p
may be written as the sum of a background pressure p,(¢),
a hydrostatic pressure p,,, and a thermally induced pressure
perturbation p.

We wish to reformulate these equations to describe the
large-scale motion of the fluid away from the combustion
zone. We start by noting that the velocity vector u can
always be decomposed into a solenoidal field v plus an
irrotational flow derived from a potential flow ¢,

u=v+Vg, (6)
where Vxv=0 and V.v=0. The solenoidal field v is
largely responsible for the motion of the smoke and hot
gases transported far from the combustion zone [4], while
the irrotational flow V¢, which is related to the heat source
through the equation

Ldpy_7-

p) Vg Pl eviy )
y dt ¥
is only of importance in the combustion zone. Also, the net
radiative emission from the fire can usually be subtracted
from the chemical heat release, yielding a net heat release
represented by the term ¢. The gases outside of the combus-
tion zone are essentially transparent to infrared radiation
which dominates the radiant emission from fires.

I we assume that the average enclosure pressure p () is
constant, and that, away from the heat source, the density
is only slightly perturbed from its ambient value (i.c., p =
po(1 + Bj) for fi < 1), then we may combine Eqs. (1) and (7)
into an evolution equation for the density perturbation by
making the Boussinesq approximation. In nondimensional
form, this equation can be written

ap . 1 -
E+V-Vp-——q+RePrV p.

(8)
Note that all references to the velocity potential ¢ have been
eliminated and thus the fluid may be thought of as incom-
pressible. All lengths are relative to the enclosure height H,
and the velocity is relative to a characteristic velocity V
which is related to the magnitude of the heat source through

the relation
1/3
V=< do 8 ) '
PocypTo
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The heat source strength g, is written in units of energy per
unit time per unit length for the two-dimensional problem.
The relative density difference f is related to the charac-
teristic velocity through a Froude scaling f= V'%/gH. The
Reynolds number Re = VHp,/u, and the Prandtl number
Pr=c,u/x.

The same set of assumptions may be applied to Eq. (2),
and we write it as an evolution equation for the solenoidal
velocity v in the Boussinesq approximation

av

a1 (9)

1
+oxv+Vp—pg= —ﬂme.

The term p is the nondimensionalized form of the reduced
pressure j + p,v?/2, and g is of unit magnitude. Away from
the combustion zone, Eqs. (8) and (9) are an excellent
approximation to the equations of motion for hot gas and
smoke transport. Indeed, these equations are the basis of
the salt experiments used as a physical analog of smoke
movement in buildings [5].

II1. NUMERICAL METHOD

Because we are interested in two-dimensional, polygonal
geometries but wish to maintain the structure and efficiency
of earlier algorithms, we have chosen to transform the
spatial coordinates of the flow equations using a conformal
map of the physical domain onto a rectangle. The confor-
mality of the transformation allows us to retain the fast
Poisson solver for Eq. (12) below which speeds up the com-
putations considerably. The physical domain may be taken
as any simply connected polygon whose vertices do not
extend to infinity. This polygon is mapped conformally onto
a rectangle whose aspect ratio is dependent on the shape of
the polygon. A description of the Schwarz-Christoffel
mapping package SCPACK may be found in [6]. For
convenience, we write Egs. (8) and (9) in terms of the scalar
vorticity o and the stream function i,

op . 1 2x
JE+V'Vp——q+RePer (10)
dw . | [
J57+V-Vw—prg—Rve (1
VY = — Jo, (12)

where J=20(x, »)/0(&, n) is the Jacobian of the mapping
from the nondimensionalized physical coordinates (x, y) to
the computational coordinates (&, n).

Equations (10)}-(12) are a mixed parabolic/elliptic system
of partial differential equations; i.e., the equations for the
density and for the vorticity are parabolic, whereas that for
the stream function is elliptic. The incompressible equations
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of hydrodynamics are well known to have this mixed
character. In [2] we used a lagged-diffusion leapfrog
time-stepping scheme to solve the equations, but we found
that this explicit method was severely restricted by the CFL
condition imposed by the grid cells where the Jacobian is
small, and it was also subject to instabilities. A simple
Runge-Kutta second-order scheme was tried, and although
it removed the instabilities of the earlier algorithm, it
required twice as much CPU time as the leapfrog scheme.
To incorporate both stability and efficiency in the model, we
have chosen to use a simple version of the alternating direc-
tion implicit (ADI) method. Because of its good stability
properties, we have decreased our typical CPU usage by a
factor of five or six from those reported in [2].

A. The Density Equation

The density evolution equation in continuous form is the
mass conservation equation minus the expression for the
velocity divergence. Each of these two equations is
approximated by central differences and then subtracted.
Details of this procedure may be found in [2]. Note that
within each rectangular cell, vector components are
evaluated at the sides, scalar quantities at the center, and
vorticity and the stream function at the corners. The ADI
scheme advances in time the density perturbation of each
cell p,, through the two-step process

Ph—Pi
82
+ (W" 5n - (RC : PI') ! 57111) ﬁ:'k = —qu‘
P — Pk
ot/2

+(w" 8, — (Re-Pr) " 6,) 5" = — I,
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gy +(u"6:—(Re-Pr)~'d.)pk

where J. and .. are the standard first- and second-order
central difference approximations, and (u, w) are the com-
ponents of the velocity vector v in the £ and # directions,
respectively. The nondimensional heat source at a point

(&> ni) is given by
T Ty s — 2 . 2
q;'k - tanh(oct,,) V,/(760-"/72:2 e~ oil&i= o) — aylmic—ne) ,

where o, o,, and the point (¢, #,) determine the spatial
extent and the center of the heat source, respectively. At
boundaries, the normal density gradient is specified by
either an adiabatic (0p/én=0) or a cold-wall (p=0)
condition.

B. The Vorticity Equation

The vorticity equation may be differenced in either non-
conservative or conservative form. The latter is preferable
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because it ensures nonlinear stability and complete com-
patibility between our earlier primitive variable formulation

[2] and the vorticity-stream function formulation
presented here. At internal grid cell nodes we have
W} —
Ju l&’z/z—h (34" —Re™ ' 8,:) w

+(6,w"—Re

+(3,89—8.8")p5t " =0

Wt —wk
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where (g'*, g'") are the components of the normalized
gravity vector and u and w are taken as averages of their
values at the cell edges. The value of the vorticity at the
boundary is not updated implicitly, but rather it is assigned
a value after the stream function equation has been solved.
Thus, there is a time-lag in the updating of the boundary
vorticity, but this is not a great concern because the time-
steps are relatively small {7]. The velocity at the boundary
is determined by a no-flux condition and a no-slip
condition.

C. The Stream Function Equation

At all interior cell corners, we have
(See+ 0, Wi = —Jpy

and 1 = 0 on the boundary. We solve this equation using a
standard elliptic PDE solver. The velocity components u
and w are then computed at cell edges from the values of
at the corners

uik=5¢‘//ik; Wiy = ‘5;,'//.'1(-
The vorticity at the boundary is updated to be consistent

with the stream function equation. For example, at the left
boundary, i =0, we have

l//1,1( +y . 1,k
8E2

= —Jor Oox

since o, =0. For no-slip boundary conditions, ¥ is
reflected evenly across the boundary, i.e., ¥, , =y _, , thus

_ 2 15 _ 2wy,
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The computation of vorticity at the boundary gives rise to
a restriction on the time step analogous to that of the 1D
heat equation. This will be discussed in the next section.

D. Stability

The vorticity and the density are updated at each time-
step through an implicit scheme which requires the solution
of a tridiagonal system of linear equations. To determine the
stability requirements for the solution of this system, we
consider the first step of the two-part vorticity time-step.
Diagonal dominance of the kth row matrix is assured if

1ot ot
J,.k+L—>—( ) (13)

3&2" 2
where v=Re ~'. Assuming that |u,_, |~ |u;, , | = Uy the
time-step must satisfy the inequality

uifl,k v
26 8E?

Uiv 16 ¥
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to achieve diagonal dominance [7]. Note that if

Uy 6 —2v <0, then Eq.(13) is satisfied. The time-step
restriction for the other tridiagonal systems which must be
solved are also of this form. This stability criterion points
out the severe limitation placed on the time-step when
considering geometries in which there exist regions where
the Jacobian approaches zero and the velocity is large. Note
that in a stagnation region, this restriction is much less
important.

In addition to the above stability criteria, for no-slip
boundary conditions there is an additional constraint on
the time-step size. This constraint is due to the imposition of
vorticity at the boundary and is similar to the stability
criterion of the 1D heat equation. Based on numerical tests
of our own and by Peyret and Taylor [ 7], the restriction on
ot is approximately

2J 6&2
ot < i.
Y

(15)

This condition is less of a restriction for our work because
our aim is to compute with the largest Reynolds number
that a particular grid geometry will allow, in which case the
time-step established by Eq. (14) is the limiting condition
on the time-step rather than Eq. (15).

1V. RESULTS

In this section samples of results generated using a code
implementing the algorithm described above are presented
and discussed. The results represent some problems of
interest to scientists concerned with enclosure fires. The
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computations typically consist of about half a million grid
cells, requiring up to 100 Mb of memory and up to 30 h of
CPU time on a high-end workstation.

A. The Trench Effect

Fires in buildings involve the transport of heat and mass
by gravity-induced or buoyant convection. Generally, this
convection occurs in rectangular enclosures where the
direction of gravity is parallel to the walis. However, the
enclosure may be sloped relative to gravity. A very
important example of a fire in a sloped enclosure was the
devastating fire in the King’s Cross underground station in
England in 1987, where there was significant loss of life as
well as property damage. Numerical simulation of this fire
uncovered an unexpected phenomenon which caused a very
rapid spread of the fire and led to much of the devastation
[8,9]. This phenomenon was termed the trench effect and
caused some controversy during investigations of the King’s
Cross fire in England. The phenomenon was ultimately
confirmed by experiments and additional simulation, but
transient aspects of the fire simulation are still of interest.

F1G. 1. Simulation of fire in a stairwell demonstrating the trench
effect. Shown are particles which are advected with the flow. Adiabatic,
free-slip boundary conditions have been imposed. The Reynolds number is
40,000; the grid size is 1024 x 256.
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We repeat here a computational experiment performed
with a rectangular domain tilted 35° from the horizontal
which is intended to model a stairwell [10]. The major
difference in the present calculation is the addition of more
realistic “landings” to the geometry. Figure 1 presents a
time sequence for the flow generated in an enclosure by a
heat source (fire) located near the base of the stairwell. The
mesh size is 1024 x 256 (262,144 grid cells), the Reynolds
number based on the height of the landings is 40,000; and
adiabatic, free-slip boundary conditions (mimicking an
inviscid flow at large scales) are imposed. In this figure, the
plume rises, but it is bent back toward the lower landing.
After the hot gases hit the ceiling, they progress both toward
the back wall and up the ceiling toward the high end.
However, the hot gases leaving the heat source are pinned
along the floor and form a hot gas jet which progresses up
along the floor, shedding hot gases near its front. This
phenomenon we interpret as the trench effect.

B. Backdrafts

In Fig. 3, we present the flow induced by a fire in a small
enclosure with a window. Initially, the small compartment
is filled with hot air, the larger area with ambient. Then the
imaginary window separating the fluids is broken, and the
hot and cold air mix at the interface. This is a challenging
computation because of the wide variation in grid cell size.
The mesh size is 1024 x 256, thus every cell pictured in Fig. 2
contains 64 subcells.

For convenience, we write Egs. (8) and (9). This resolu-
tion allows for a Reynolds number of 40,000, based on the
height of the small room. Adiabatic, no-slip boundary
conditions are imposed to permit comparisons with salt
water experiments. The stability requirement (14) limits the

T

T

FIG. 2. A skeleton of the computational grid used for the backdraft
simulations. This figure is mapped conformally onto a rectangle using the
Schwarz-Christoffe]l mapping package SCPACK [6].
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average time-step size to 1.5 x 10~3 nondimensionalized
time units, and the density plot of Fig. 3 is shown five time
units after the rupturing of the window. We note that the
vorticity of the escaping plume tends to pin the hot gas to
the wall of the enclosure, a phenomenon which has been
seen in actual fires where the flames and hot gases pour out
of an enclosure opening and then spread rapidly up the side
of the building. This type of fire scenario is of interest to
those studying phenomena known as backdrafts [11].
These occur when a fire in a sealed compartment consumes
most of the available oxygen and apparently dies out, but is
then re-ignited when fresh air is allowed to flow into the
room following the opening of a door or breaking of a
window.

C. Gravity Current

Finally, we consider the flow induced by the introduction
of salt water into a long rectangular tank filled with fresh
water. As noted above, this type of experiment is often used
to model the transport of smoke and hot gases along the
ceiling of a long corridor of a building. The flow is an exam-
ple of a general class of flows known as gravity currents,
which arise in geophysical processes as well as in heating,
ventilating and air conditioning (HVAC) applications [12].
Figure 4 displays a few profiles of a computed gravity
current. Heavy fluid flows into the enclosure via a slot
opening at the lower left, and the overflow is evacuated out
of an equally sized opening at the upper right.

The equations of motion for the salt/fresh water mixture
are exactly those given above, with the thermal conductivity
analogous to the material diffusivity of the sait water, and
the Prandtl number analogous to a Schmidt number. The
analogy is not perfect because the Prandtl number for air is
about 0.7, whereas the Schmidt number for salt water is on
the order of several hundred. We can compute directly flows
whose Schmidt numbers are on the order of one, and we can
consider the special case where the Schmidt number is
infinite, solving Eq. (10) in Lagrangian form (with density
determined by initial salinity concentration and g = 0)

Dp

D= % (16)
We have compared our computational results using both
forms of the density equation with the gravity current
experiments of Chan, Zukoski, and Kubota [13], and have
found that the results are insensitive to the size of the
Prandtl/Schmidt number. In the experiments salt water is
pumped into a long rectangular tank of square cross section
at a specified rate. For the computation, we use a 16 x 1 rec-
tangular enclosure (3072 x 192 cells). The Reynolds number
for the computation (based on the enclosure height) is
about 30,000. Figure 5 compares the head trajectories for
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FI1G. 3. Simulation of smoke pouring from a window. Shown are nondimensionalized contours of temperature. Adiabatic, no-slip boundary
conditions have been imposed. The Reynolds number is 40,000; the grid size is 1024 x 256.

FIG. 4. A gravity current develops as heavy fluid is pumped into the channel at the lower left and evacuated at the upper right. Shown are
nondimensionalized contours of density.
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FIG. 5. A comparison of the gravity current trajectories for a nondiffusive computation (solid line), a diffusive computation (dashed line), and a salt

water experiment (stars).

the experiment and the computation. The agreement
between the computations and the experiment is excellent
and gives us great confidence in the methodology.

V. CONCLUSION

The methodology outlined in this paper provides a solid
foundation for the future study of smoke transport and
other topics of interest in combustion and fire research. In
several years time, we are confident that increased com-
puting power will enable three-dimensional computations
based on the ideas described here, as well as the inclusion of
more realistic subgrid combustion models. Unfortunately,
some of the techniques used for the 2D problem, namely the
conformal mapping and the vorticity-stream function
approach, become troublesome in 3D, but there are
certainly other methods which can be applied. What is
most valuable are the set of assumptions about the fire and
fire-induced flow field which lead to a great simplification of
the relevant equations.
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